• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Dong, Pei (Dong, Pei.) | Xia, Yong (Xia, Yong.) | Zhuo, Li (Zhuo, Li.) | Feng, Dagan (Feng, Dagan.)

收录:

EI Scopus

摘要:

With increased use of H.264/AVC in various applications including video surveillance systems, feature extraction and knowledge representation in compressed domain are becoming attractive. A real-time H.264/AVC compressed domain moving object segmentation and tracking algorithm for surveillance videos is proposed in this paper. This algorithm consists of moving object detection, bounding box matching, spatiotemporal merge and split reasoning and trajectory smoothing, with major innovation in incorporating the information provided by the prediction modes into the framework of motion detection and trajectory construction. The experimental results on both indoor and outdoor surveillance videos demonstrate that the adaptive use of the information from motion vectors, DCT coefficients and prediction modes can substantially improve the performance of moving object segmentation and tracking. © 2011 IEEE.

关键词:

Object detection Forecasting Motion Picture Experts Group standards Monitoring Image segmentation Knowledge representation Motion analysis Security systems

作者机构:

  • [ 1 ] [Dong, Pei]School of Information Technologies, University of Sydney, Sydney, NSW, Australia
  • [ 2 ] [Dong, Pei]Signal and Information Processing Laboratory, Beijing University of Technology, Beijing, China
  • [ 3 ] [Xia, Yong]School of Information Technologies, University of Sydney, Sydney, NSW, Australia
  • [ 4 ] [Zhuo, Li]Signal and Information Processing Laboratory, Beijing University of Technology, Beijing, China
  • [ 5 ] [Feng, Dagan]School of Information Technologies, University of Sydney, Sydney, NSW, Australia

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1522-4880

年份: 2011

页码: 2309-2312

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 9

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:510/3880547
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司