收录:
摘要:
This paper considers the problem of variance estimation for sparse ultra-high dimensional varying coefficient models. We first use B-spline to approximate the coefficient functions, and discuss the asymptotic behavior of a naive two-stage estimator of error variance. We also reveal that this naive estimator may significantly underestimate the error variance due to the spurious correlations, which are even higher for nonparametric models than linear models. This prompts us to propose an accurate estimator of the error variance by effectively integrating the sure independence screening and the refitted cross-validation techniques. The consistency and the asymptotic normality of the resulting estimator are established under some regularity conditions. The simulation studies are carried out to assess the finite sample performance of the proposed methods.
关键词:
通讯作者信息:
电子邮件地址: