• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Eryan (Li, Eryan.) | Wang, Shudong (Wang, Shudong.) | Su, Yansen (Su, Yansen.) | Sun, Longxiao (Sun, Longxiao.) | Meng, Dazhi (Meng, Dazhi.)

收录:

EI Scopus

摘要:

Constructing gene network and analyzing its structure is a basic but important way to discover and understand unknown physiological mechanisms of Arabidopsis subject to external stimuli on both the cellular and molecular levels. Mutual information networks are identified based on gene expression profiles of Arabidopsis in normal condition and subject to stimuli. The comparison and analysis of these network structures show that four network statistics, average degree, average clustering coefficient, modularity, the proportion of non-isolated nodes can distinguish the two types of networks corresponding to normal condition and those subject to different stimuli. A new method is proposed to classify these networks in multidimensional parameter space. Our studies can help better understanding of physiological mechanisms of genome response to stimuli. © 2011 IEEE.

关键词:

Physiological models Signal processing Gene expression Physiology Information services

作者机构:

  • [ 1 ] [Li, Eryan]Institute of Information Science and Engineering, Shandong University of Science and Technology, Qingdao, China
  • [ 2 ] [Wang, Shudong]Institute of Information Science and Engineering, Shandong University of Science and Technology, Qingdao, China
  • [ 3 ] [Su, Yansen]Institute of Information Science and Engineering, Shandong University of Science and Technology, Qingdao, China
  • [ 4 ] [Sun, Longxiao]Institute of Information Science and Engineering, Shandong University of Science and Technology, Qingdao, China
  • [ 5 ] [Meng, Dazhi]Institute of Information Science and Engineering, Shandong University of Science and Technology, Qingdao, China
  • [ 6 ] [Meng, Dazhi]College of Applied Sciences, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2011

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:93/3910211
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司