• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Haojie (Liu, Haojie.) | Bao, Changchun (Bao, Changchun.) (学者:鲍长春) | Liu, Xin (Liu, Xin.) | Zhang, Xingtao (Zhang, Xingtao.) | Zhang, Liyan (Zhang, Liyan.)

收录:

EI Scopus

摘要:

In this paper a new method of blind bandwidth extension from wideband (WB) to super-wideband (SWB) audio is proposed. The Radial Basic Function (RBF) neural network is utilized to predict the coefficients of high-frequency (HF) based on the nonlinear characteristics of audio spectrum series. In addition, the linear extrapolation is used for reconstructing the envelop of HF spectrum. The bandwidth of the reconstructed audio signals is extended to SWB by using the proposed method. The result of the objective performance evaluation indicates that the proposed method can reconstruct the truncated HF components effectively and outperforms the conventional algorithms of blind bandwidth extension. © 2011 IEEE.

关键词:

Radial basis function networks Signal processing Bandwidth Extrapolation

作者机构:

  • [ 1 ] [Liu, Haojie]Speech and Audio Signal Processing Laboratory, School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Bao, Changchun]Speech and Audio Signal Processing Laboratory, School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 3 ] [Liu, Xin]Speech and Audio Signal Processing Laboratory, School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 4 ] [Zhang, Xingtao]Speech and Audio Signal Processing Laboratory, School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 5 ] [Zhang, Liyan]Speech and Audio Signal Processing Laboratory, School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2011

页码: 150-154

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 6

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:111/3908769
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司