• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Mao, Zheng (Mao, Zheng.) | Gao, Anjie (Gao, Anjie.) | Wei, Wei (Wei, Wei.) | Sun, Legong (Sun, Legong.) | Chen, Silin (Chen, Silin.)

收录:

EI Scopus

摘要:

A common method for moving target detection in image sequences involves a self-adaptive threshold for segmentation. This paper discusses each pixel modeling in the image as a mixture of Gaussian distributions and gives an improved method to update the model. First, the characteristics of the different frames method and a mixture of Gaussian distributions will be discussed. And then, the two methods, different frames method and a mixture of Gaussian distributions are combined to decide which learning rate is suitable for the updating method at this moment. If there is no moving target in the image sequences, the background model should be updated quickly to get the real background with low noise. The better foreground images will be gotten by this method with low computational complexity. The improved algorithm performs more robustly and powerfully than the classical Gaussian Mixture Model in moving target detecting. © 2011 Springer-Verlag.

关键词:

Target tracking Motion analysis Image enhancement Image segmentation Object recognition Robotics Gaussian distribution

作者机构:

  • [ 1 ] [Mao, Zheng]School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 2 ] [Gao, Anjie]School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 3 ] [Wei, Wei]Northwest Mechanical and Electrical Engineering Institute, Xianyang, Shaaxi, 712099, China
  • [ 4 ] [Sun, Legong]School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 5 ] [Chen, Silin]School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing, 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

ISSN: 1876-1100

年份: 2011

卷: 123 LNEE

页码: 455-462

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:381/4954762
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司