• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhuo Li (Zhuo Li.) | Hu Xiaochen (Hu Xiaochen.) | Li Jiafeng (Li Jiafeng.) | Zhang Jing (Zhang Jing.) | Li Xiaoguang (Li Xiaoguang.)

收录:

EI Scopus SCIE CSCD

摘要:

Images/videos captured in low-light conditions often present low luminance and contrast. Although the existing low-light enhancement algorithms can improve the subjective perception, color distortion and over-enhancement are extremely obvious, which will disturb the subsequent intelligent analysis. Therefore, a naturalness-preserved low-light enhancement algorithm for intelligent analysis is proposed in this paper. An enhancement model is established in RGB color space. Images of ColorChecker color chart are captured under a series of light conditions. To preserve the naturalness, the factors of the proposed enhancement model are estimated by the images captured in practical illumination environment. Experimental results demonstrate that the proposed algorithm can produce natural enhanced results and improve the performance of vehicle license plate localization and skin color detection compared to the existing algorithms. Furthermore, the proposed algorithm can process the 720p videos at the speed of 28.3 fps on average.

关键词:

Intelligent analysis Naturalness-preserved Low-light enhancement Vehicle license plate localizations Skin color detection

作者机构:

  • [ 1 ] [Zhuo Li]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing 100124, Peoples R China
  • [ 2 ] [Hu Xiaochen]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing 100124, Peoples R China
  • [ 3 ] [Li Jiafeng]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang Jing]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing 100124, Peoples R China
  • [ 5 ] [Li Xiaoguang]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing 100124, Peoples R China
  • [ 6 ] [Zhuo Li]Collaborat Innovat Ctr Elect Vehicles, Beijing 100124, Peoples R China

通讯作者信息:

  • [Zhuo Li]Beijing Univ Technol, Signal & Informat Proc Lab, Beijing 100124, Peoples R China;;[Zhuo Li]Collaborat Innovat Ctr Elect Vehicles, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

CHINESE JOURNAL OF ELECTRONICS

ISSN: 1022-4653

年份: 2019

期: 2

卷: 28

页码: 316-324

1 . 2 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:136

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 8

归属院系:

在线人数/总访问数:217/4297626
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司