• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xuemei, Chen (Xuemei, Chen.) | Li, Gao (Li, Gao.) | Xi, Wang (Xi, Wang.) | Zhonghua, Wei (Zhonghua, Wei.) | Zhenhua, Zhang (Zhenhua, Zhang.) | Zhigao, Liao (Zhigao, Liao.)

收录:

EI Scopus

摘要:

The traditional K-Means algorithm is sensitive to outliers, outliers traction and easy off-center, and overlap of classes can not very well show their classification. This paper introduces a variant of the probability distribution theory, K-Means clustering algorithm - Gaussian mixture model to part of the customer data randomly selected of Volkswagen dealer in a Beijing office in 2008, for example, and carry out empirical study based on the improved clustering algorithm model. The results showed that: data mining clustering algorithm in active demand management and market segmentation has important significance. © 2011 IEEE.

关键词:

K-means clustering Statistics Computation theory Gaussian distribution Information services Data mining

作者机构:

  • [ 1 ] [Xuemei, Chen]Beijing Institute of Technology, School of Mechanical and Vehicular Engineering, Beijing 100081, China
  • [ 2 ] [Xuemei, Chen]Jiangsu University Automobile Key Laboratory, Jiangsu University, Zhejiang, 212013, China
  • [ 3 ] [Li, Gao]Beijing Institute of Technology, School of Mechanical and Vehicular Engineering, Beijing 100081, China
  • [ 4 ] [Xi, Wang]Beijing Institute of Technology, School of Mechanical and Vehicular Engineering, Beijing 100081, China
  • [ 5 ] [Zhonghua, Wei]Beijing University of Technology, Traffic Engineering Key Lab. of Beijing, Beijing, China
  • [ 6 ] [Zhenhua, Zhang]Beijing Institute of Technology, School of Mechanical and Vehicular Engineering, Beijing 100081, China
  • [ 7 ] [Zhigao, Liao]School of Mechanical and Vehicular, General Station of Quality Inspection for Special Engineering of Civil Aviation 4, Beijing 100007, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2011

页码: 481-484

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:181/4553952
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司