• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Jingwu (Zhang, Jingwu.) | Zhang, Hongbin (Zhang, Hongbin.)

收录:

EI Scopus

摘要:

Semi-supervised kernel learning is an important technique for classification and has been actively studied recently. In this paper, we propose a new semi-supervised spectral kernel learning method to learn a new kernel matrix with both labeled data and unlabeled data, which tunes the spectral of a standard kernel matrix by maximizing the margin between two classes. Our approach can be turned into a non-linear optimization problem. We use lagrangian support vector machines and gradient descent algorithm together to solve our optimization problem efficiently. Experimental results show that our spectral kernel learning method is more effective for classification than traditional approaches. © 2010 IEEE.

关键词:

Classification (of information) Gradient methods Learning algorithms Matrix algebra Nonlinear programming Support vector machines

作者机构:

  • [ 1 ] [Zhang, Jingwu]College of Computer Science, Beijing University of Technology, Beijing, China
  • [ 2 ] [Zhang, Hongbin]College of Computer Science, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2010

页码: 214-217

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:187/3609099
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司