• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jiang, Jiaojiao (Jiang, Jiaojiao.) | Zhang, Haibin (Zhang, Haibin.) (学者:张海斌)

收录:

EI Scopus

摘要:

Nonnegative Matrix Factorization (NMF) has been widely used in dimensionality reduction, machine learning, and data mining, etc. It aims to find two nonnegative matrices whose product can well approximate the nonnegative data matrix, which naturally lead to parts-based representation. In this paper, we present a family of projective nonnegative matrix factorization algorithm, PNMF with Bregman divergence. Several versions of divergence such as Euclidean distance and Kullback-Leibler (KL) divergence with PNMF have been studied. In this paper, we investigate the MU rules to solve the PNMF with some other divergence, such as β-divergence, IS-divergence. It has been shown that the base matrix by Bregman PNMF is better suitable for orthoganal, localized and sparse representation than by traditional NMF. © 2010 IEEE.

关键词:

Data mining Factorization Matrix algebra

作者机构:

  • [ 1 ] [Jiang, Jiaojiao]College of Applied Sciences, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Zhang, Haibin]College of Applied Sciences, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2010

页码: 233-237

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 6

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:206/3608834
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司