• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han, Xiaolin (Han, Xiaolin.) | Yu, Jing (Yu, Jing.) | Luo, Jiqiang (Luo, Jiqiang.) | Sun, Weidong (Sun, Weidong.)

收录:

EI Scopus SCIE

摘要:

High-spatial hyperspectral (HH) image reconstruction using both high-spatial multispectral (HM) image and low-spatial hyperspectral (LH) image over the same scene is widely used in many real applications. Nevertheless, the pair of HM image and LH image over the same scene is hard to obtain. To solve this problem, a new HH image reconstruction method using spectral library-based dictionary learning (named as HIRSL) is proposed in this paper, only from one HM image. The above reconstruction problem is formulated in the framework of sparse representation, as an estimation of the band matching matrix, the spectral dictionary, and the sparse coefficients. More specifically, a band matching method is proposed for mapping the common spectral library to a specific spectral library corresponding to the reconstructed HH image in spectral domain. Then, an efficient spectral dictionary learning method is proposed for the construction of spectral dictionary using the matched specific spectral library, which avoids the dependence of the LH image over the same scene. Finally, the sparse coefficients of the HM image with respect to the learned spectral dictionary are estimated using the alternating direction method of multipliers without nonnegative constraint. Comparison results on simulated and real data sets with the relative state-of-the-art methods demonstrate that even only using one HM image, our proposed method achieves a comparable reconstruction quality of high-spatial hyperspectral image both in spatial and spectral domains.

关键词:

spectral dictionary learning sparse representation spectral library Hyperspectral image reconstruction

作者机构:

  • [ 1 ] [Han, Xiaolin]Tsinghua Univ, Dept Elect Engn, Beijing Natl Res Ctr Informat Sci & Technol, State Key Lab Intelligent Technol & Syst, Beijing 100084, Peoples R China
  • [ 2 ] [Sun, Weidong]Tsinghua Univ, Dept Elect Engn, Beijing Natl Res Ctr Informat Sci & Technol, State Key Lab Intelligent Technol & Syst, Beijing 100084, Peoples R China
  • [ 3 ] [Yu, Jing]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Luo, Jiqiang]Beijing Inst Technol, Sch Optoelect, Beijing 100081, Peoples R China

通讯作者信息:

  • [Han, Xiaolin]Tsinghua Univ, Dept Elect Engn, Beijing Natl Res Ctr Informat Sci & Technol, State Key Lab Intelligent Technol & Syst, Beijing 100084, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

ISSN: 0196-2892

年份: 2019

期: 3

卷: 57

页码: 1325-1335

8 . 2 0 0

JCR@2022

ESI学科: GEOSCIENCES;

ESI高被引阀值:123

JCR分区:1

被引次数:

WoS核心集被引频次: 20

SCOPUS被引频次: 20

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:116/3918609
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司