• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han, Lihui (Han, Lihui.) | Xiang, Xin (Xiang, Xin.) | Zhang, Hailiang (Zhang, Hailiang.) | Cheng, Shuiyuan (Cheng, Shuiyuan.) (学者:程水源) | Wang, Hongmei (Wang, Hongmei.) | Wei, Wei (Wei, Wei.) | Wang, Haiyan (Wang, Haiyan.) | Lang, Jianlei (Lang, Jianlei.) (学者:郎建垒)

收录:

EI Scopus SCIE

摘要:

The real-time continuous measurements of non-refractory submicron aerosol (NR-PM1) species including organics (Org), sulfate (SO42-), nitrate (NO3-), ammonium (NH4+) and chloride (Cl-) in winter from 10 December 2015 to 30 January 2016 in Beijing were performed with an Aerodyne Aerosol Chemical Speciation Monitor (ACSM). The average concentration of NR-PM, was 81.24 mu g m(-3), with the mean concentration in heavy haze days being 220.00 mu g m(-3), similar to 3 times higher than that in light haze days and similar to 15 times higher than that in clean days. Org was the most significant component of NR-PM1 species, accounting for 53% of the total NR-PM1 for the entire study. SO42- was also a significant component, accounting for 23% of the total NR-PM1. However, NO3-, NH4+ and Cl- composition together accounted for 25% of the total NR-PM1. All NR-PM1 species presented remarkably diurnal cycles in haze days, characterized by the highest concentrations occurring at midnight, and the lowest concentrations occurring at daytime. Note that the sulfur oxidation ratios were higher than the nitrogen oxidation ratios for the entire study, especially during the haze periods. The formation of sulfate was mainly affected by relative humidity (RH), while that of nitrate was more associated with NH3. Heterogeneous oxidation of NO(2)on the surfaces of aerosol particles might be a significant pathway of nitrate formations during haze periods. NR-PM1 was mainly from secondary chemical reactions contributing 46.1%, vehicle emissions contributing 22.3%, coal combustion contributing 16.1%, and biomass burning contributing 15.6% in clean days. However, compared to the clean-day source contributions, the haze-day secondary source contribution to NR-PM1 increased to 66.8%, indicating that NR-PM1 in haze days was dramatically dominated by the secondary pollutants.

关键词:

Haze NR-PM1 Diurnal cycle Source contribution Mass concentration Influencing factors

作者机构:

  • [ 1 ] [Han, Lihui]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 2 ] [Xiang, Xin]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Hailiang]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 4 ] [Cheng, Shuiyuan]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, Hongmei]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 6 ] [Wei, Wei]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 7 ] [Wang, Haiyan]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 8 ] [Lang, Jianlei]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China

通讯作者信息:

  • [Han, Lihui]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ATMOSPHERIC ENVIRONMENT

ISSN: 1352-2310

年份: 2019

卷: 201

页码: 360-368

5 . 0 0 0

JCR@2022

ESI学科: GEOSCIENCES;

ESI高被引阀值:123

JCR分区:2

被引次数:

WoS核心集被引频次: 18

SCOPUS被引频次: 21

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:142/3894064
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司