• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Jian-Geng (Li, Jian-Geng.) | Geng, Tao (Geng, Tao.)

收录:

EI Scopus

摘要:

As the gene expression profiling data being with the characteristic of severe multicollinearity, small samples, and high dimension, it is difficult to build tumor classification model. Partial least square regression was applied as dimension reduction method to the model of tumor classification. Respectively, principal components are extracted from five gene expression profiling data sets: Gastric, C.vs.SC, Colon, Lung and Acute Leukemia. Then, the extracted principal components are used to classify the samples combining with SVM method. The results showed that the partial least square regression combining with SVM can be used not only in two-class problem, but also in multiclass problem reliably. ©2010 IEEE.

关键词:

Biomedical engineering Gene expression Least squares approximations Regression analysis Support vector machines Tumors

作者机构:

  • [ 1 ] [Li, Jian-Geng]Electronic Information and Control Engineering, Beijing University of Technology (BJUT), Beijing, China
  • [ 2 ] [Geng, Tao]Electronic Information and Control Engineering, Beijing University of Technology (BJUT), Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2010

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:81/3609778
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司