• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yao, Ming-Hui (Yao, Ming-Hui.) (学者:姚明辉) | Zhang, Wei (Zhang, Wei.) | Cao, Dong-Xing (Cao, Dong-Xing.) (学者:曹东兴)

收录:

EI Scopus

摘要:

The multi-pulse orbits and chaotic dynamics of the cantilevered pipe conveying pulsating fluid with harmonic external force are studied in detail. The nonlinear geometric deformation of the pipe and the Kelvin constitutive relation of the pipe material are considered. The nonlinear governing equations of motion for the cantilevered pipe conveying pulsating fluid are determined by using Hamilton principle. The four-dimensional averaged equation under the case of principle parameter resonance, 1/2 subharmonic resonance and 1:2 internal resonance and primary parametric resonance is obtained by directly using the method of multiple scales and Galerkin approach to the partial differential governing equation of motion for the cantilevered pipe. The system is transformed to the averaged equation. From the averaged equation, the theory of normal form is used to find the explicit formulas of normal form. Based on normal form obtained, the energy phase method is utilized to analyze the multi-pulse global bifurcations and chaotic dynamics for the cantilevered pipe conveying pulsating fluid. The analysis of global dynamics indicates that there exist the multi-pulse jumping orbits in the perturbed phase space of the averaged equation. From the averaged equations obtained, the chaotic motions and the Shilnikov type multi-pulse orbits of the cantilevered pipe are found by using numerical simulation. The results obtained above mean the existence of the chaos for the Smale horseshoe sense for the pulsating fluid conveying cantilevered pipe. Copyright © 2009 by ASME.

关键词:

Chaos theory Design Dynamics Equations of motion Nonlinear equations Phase space methods Resonance

作者机构:

  • [ 1 ] [Yao, Ming-Hui]College of Mechanical Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 2 ] [Zhang, Wei]College of Mechanical Engineering, Beijing University of Technology, Beijing, 100124, China
  • [ 3 ] [Cao, Dong-Xing]College of Mechanical Engineering, Beijing University of Technology, Beijing, 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2010

期: PART C

卷: 4

页码: 1715-1723

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:315/2903102
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司