• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhou, Hongbiao (Zhou, Hongbiao.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞)

收录:

EI Scopus SCIE

摘要:

Through the analysis of the biological wastewater treatment process (WWTP), a multiobjective optimal control strategy is developed with the usage of energy consumption (EC) and effluent quality (EQ) as objectives to be optimized. To effectively handle the multiobjective optimization problem (MOP) with complex Pareto-optimal front (POF), an adaptive multiobjective evolutionary algorithm based on decomposition (AMOEA/D) is proposed in this paper. Since the efficiency of the multiple reference points and two-phase optimization strategies in solving MOPs with complex POFs has been proved. In the proposed AMOEA/D, an auto-switching strategy based on the aggregation function enhancement is designed to automatically make the algorithm switch from the first phase to the second phase. Besides, an adaptive differential evolution strategy is introduced into AMOEA/D to balance exploration and exploitation during the evolutionary process. Finally, the dynamic optimization, intelligent decision and bottom tracking control of the set-points of the dissolved oxygen and nitrate nitrogen in the WWTP are achieved via the combination of AMOEA/D with the self-organizing fuzzy neural network approximator and the self-organizing fuzzy neural network controller. The international benchmark simulation model No. 1 (BSM1) is utilized for experimental verification. Simulation results demonstrate that the proposed AMOEA/D can effectively reduce the EC of the WWTP under the premise of ensuring effluent parameters to meet the effluent discharge standards.

关键词:

Auto-switching Adaptive differential evolution strategy MOEA/D Two-phase optimization Wastewater treatment process Multiobjective optimal control

作者机构:

  • [ 1 ] [Zhou, Hongbiao]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Zhou, Hongbiao]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 4 ] [Qiao, Junfei]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 5 ] [Zhou, Hongbiao]Huaiyin Inst Technol, Fac Automat, Huaian 223003, Peoples R China

通讯作者信息:

  • 乔俊飞

    [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;[Qiao, Junfei]Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

APPLIED INTELLIGENCE

ISSN: 0924-669X

年份: 2019

期: 3

卷: 49

页码: 1098-1126

5 . 3 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:136

JCR分区:2

被引次数:

WoS核心集被引频次: 39

SCOPUS被引频次: 48

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 6

归属院系:

在线人数/总访问数:634/3912672
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司