• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Allen (Zhang, Allen.) | Wang, Kelvin C. P. (Wang, Kelvin C. P..) | Fei, Yue (Fei, Yue.) | Liu, Yang (Liu, Yang.) | Chen, Cheng (Chen, Cheng.) | Yang, Guangwei (Yang, Guangwei.) | Li, Joshua Q. (Li, Joshua Q..) | Yang, Enhui (Yang, Enhui.) | Qiu, Shi (Qiu, Shi.)

收录:

EI Scopus SCIE

摘要:

A recurrent neural network (RNN) called CrackNet-R is proposed in the article for fully automated pixel-level crack detection on three-dimensional (3D) asphalt pavement surfaces. In the article, a new recurrent unit, gated recurrent multilayer perceptron (GRMLP), is proposed to recursively update the internal memory of CrackNet-R. Unlike the widely used long short-term memory (LSTM) and gated recurrent unit (GRU), GRMLP is intended for deeper abstractions on the inputs and hidden states by conducting multilayer nonlinear transforms at gating units. CrackNet-R implements a two-phase sequence processing: sequence generation and sequence modeling. Sequence generation is specifically developed in the study to find the best local paths that are most likely to form crack patterns. Sequence modeling predicts timely probabilities of the input sequence being a crack pattern. In terms of sequence modeling, GRMLP slightly outperforms LSTM and GRU by using only one more nonlinear layer at each gate. In addition to sequence processing, an output layer is proposed to produce pixel probabilities based on timely probabilities predicted for sequences. The proposed output layer is critical for pixel-perfect accuracy, as it accomplishes the transition from sequence-level learning to pixel-level learning. Using 3,000 diverse 3D images, the training of CrackNet-R is completed through optimizing sequence modeling, sequence generation, and the output layer serially. The experiment using 500 testing pavement images shows that CrackNet-R can achieve high Precision (88.89%), Recall (95.00%), and F-measure (91.84%) simultaneously. Compared with the original CrackNet, CrackNet-R is about four times faster and introduces tangible improvements in detection accuracy.

关键词:

作者机构:

  • [ 1 ] [Zhang, Allen]Oklahoma State Univ, Sch Civil & Environm Engn, Stillwater, OK 74078 USA
  • [ 2 ] [Wang, Kelvin C. P.]Oklahoma State Univ, Sch Civil & Environm Engn, Stillwater, OK 74078 USA
  • [ 3 ] [Fei, Yue]Oklahoma State Univ, Sch Civil & Environm Engn, Stillwater, OK 74078 USA
  • [ 4 ] [Liu, Yang]Oklahoma State Univ, Sch Civil & Environm Engn, Stillwater, OK 74078 USA
  • [ 5 ] [Chen, Cheng]Oklahoma State Univ, Sch Civil & Environm Engn, Stillwater, OK 74078 USA
  • [ 6 ] [Yang, Guangwei]Oklahoma State Univ, Sch Civil & Environm Engn, Stillwater, OK 74078 USA
  • [ 7 ] [Li, Joshua Q.]Oklahoma State Univ, Sch Civil & Environm Engn, Stillwater, OK 74078 USA
  • [ 8 ] [Wang, Kelvin C. P.]Southwest Jiaotong Univ, Sch Civil Engn, Chengdu, Sichuan, Peoples R China
  • [ 9 ] [Yang, Enhui]Southwest Jiaotong Univ, Sch Civil Engn, Chengdu, Sichuan, Peoples R China
  • [ 10 ] [Qiu, Shi]Beijing Univ Technol, Sch Transportat Engn, Beijing, Peoples R China

通讯作者信息:

  • [Wang, Kelvin C. P.]Oklahoma State Univ, Sch Civil & Environm Engn, Stillwater, OK 74078 USA;;[Wang, Kelvin C. P.]Southwest Jiaotong Univ, Sch Civil Engn, Chengdu, Sichuan, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING

ISSN: 1093-9687

年份: 2019

期: 3

卷: 34

页码: 213-229

9 . 6 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:136

JCR分区:1

被引次数:

WoS核心集被引频次: 215

SCOPUS被引频次: 249

ESI高被引论文在榜: 17 展开所有

  • 2024-11
  • 2024-11
  • 2024-9
  • 2024-9
  • 2024-7
  • 2024-5
  • 2024-3
  • 2024-1
  • 2023-11
  • 2023-9
  • 2023-7
  • 2023-5
  • 2023-3
  • 2023-1
  • 2022-11
  • 2022-9
  • 2022-7

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:184/4521933
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司