• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xie, Tianfa (Xie, Tianfa.) | Wong, W. Eric (Wong, W. Eric.)

收录:

EI Scopus

摘要:

Software metric models are useful in predicting the target software metric(s) for any future software project based on the project's predictor metric(s). Obviously, the construction of such a model makes use of a data sample of such metrics from analogous past projects. However, incomplete data often appear in such data samples. Worse still, the necessity to include a particular continuous predictor metric or a particular category for a certain categorical predictor metric is most likely based on an experience-related intuition that the continuous predictor metric or the category matters to the target metric. However, in the presence of incomplete data, this intuition is traditionally not verifiable 'retrospectively' after the model is constructed, leading to redundant continuous predictor metric(s) and/or excessive categorization for categorical predictor metrics. As an improvement of the author's previous work to solve all these problems, this paper proposes a methodology incorporating the k-nearest neighbors (k-NN) multiple imputation method, kernel smoothing, Monte Carlo simulation, and stepwise regression. This paper documents this methodology and one experiment on it. ©2010 IEEE.

关键词:

Intelligent systems Monte Carlo methods Nearest neighbor search

作者机构:

  • [ 1 ] [Xie, Tianfa]College of Applied Sciences, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Wong, W. Eric]Department of Computer Science, University of Texas at Dallas, Richardson, TX 75083, United States

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

年份: 2010

卷: 4

页码: 1682-1688

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:463/4220096
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司