• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Qiaohong (Li, Qiaohong.) | Lin, Weisi (Lin, Weisi.) | Gu, Ke (Gu, Ke.) (学者:顾锞) | Zhang, Yabin (Zhang, Yabin.) | Fang, Yuming (Fang, Yuming.)

收录:

EI Scopus SCIE

摘要:

During recent years, quality-aware features extracted from natural scene statistics (NSS) models have been used in development of blind image quality assessment (BIQA) algorithms. Generally, the univariate distributions of bandpass coefficients are used to fit a parametric probabilistic model and the model parameters serve as the quality-aware features. However, the inter-location, inter-direction and inter-scale correlations of natural images cannot be well exploited by such NSS models, as it is hard to capture such dependencies using univariate marginal distributions. In this paper, we build a novel NSS model of joint log-contrast distribution to take into account the across space and direction correlations of natural images (inter-scale correlation to be explored as the next step). Furthermore, we provide a new efficient approach to extract quality-aware features as the gradient of log-likelihood on the NSS model, instead of using model parameters directly. Finally, we develop an effective joint-NSS model based BIQA metric called BJLC (BIQA based on joint log-contrast statistics). Extensive experiments on four public large-scale image databases have validated that objective quality scores predicted by the proposed BIQA method are in higher accordance with subjective ratings generated by human observers compared with existing methods. (C) 2018 Published by Elsevier B.V.

关键词:

Partial least square No-reference (NR) Natural scene statistics Blind image quality assessment (BIQA)

作者机构:

  • [ 1 ] [Li, Qiaohong]Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
  • [ 2 ] [Lin, Weisi]Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
  • [ 3 ] [Zhang, Yabin]Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
  • [ 4 ] [Gu, Ke]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 5 ] [Fang, Yuming]Jiangxi Univ Finance & Econ, Sch Informat Technol, Nanchang 330013, Jiangxi, Peoples R China

通讯作者信息:

  • [Lin, Weisi]Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

NEUROCOMPUTING

ISSN: 0925-2312

年份: 2019

卷: 331

页码: 189-198

6 . 0 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:147

JCR分区:1

被引次数:

WoS核心集被引频次: 17

SCOPUS被引频次: 18

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:536/3904901
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司