• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Honggui, Han (Honggui, Han.) (学者:韩红桂) | Junfei, Qiao (Junfei, Qiao.) (学者:乔俊飞)

收录:

EI Scopus

摘要:

This paper presents a growing algorithm to design the architecture of RBF neural network called growing RBF neural network algorithm (GRBF). The GRBF starts from a single prototype randomly initialized in the feature space; the whole algorithm consists of two major parts: The structure learning phase and parameter adjusting phase. In the structure algorithm, the growing strategy is used to judge when and where the RBF neural network should be grown in the hidden layer based on the sensitivity analysis of the network output. In the parameter adjusting strategy, the whole weights of the RBF should be adjusted for improving the whole capabilities of the GRBF. In the end, the proposed GRBF network is employed to track non-linear functions. The computational complexity analysis and the results of the simulations confirm the efficiency of the proposed algorithm. © 2009 Springer-Verlag Berlin Heidelberg.

关键词:

Computational efficiency Functions Multilayer neural networks Radial basis function networks Sensitivity analysis

作者机构:

  • [ 1 ] [Honggui, Han]College of Electronic and Control Engineering, Beijing University of Technology, Beijing, China
  • [ 2 ] [Junfei, Qiao]College of Electronic and Control Engineering, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ISSN: 1867-5662

年份: 2009

卷: 61 AISC

页码: 73-82

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:197/3603401
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司