首页>成果

  • 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

[会议论文]

A kernel density estimation based Bayesian classifier for celestial spectrum recognition

分享
编辑 删除 报错

作者:

Yang, Jin-Fu (Yang, Jin-Fu.) (学者:杨金福) | Li, Ming-Ai (Li, Ming-Ai.) (学者:李明爱) | Yu, Naigong (Yu, Naigong.) (学者:于乃功)

收录:

EI Scopus

摘要:

Celestial spectrum recognition is an indispensable part of any workable automated data processing system of celestial objects. Many methods have been proposed for spectra recognition, in which most of them concerned about feature extraction. In this paper, we present a Bayesian classifier based on Kernel Density Estimation (KDE) which is composed of the following two steps: In the first step, linear Principle Component Analysis (PCA) is used to extract features to decrease computational complexity and make the distribution of spectral data more compact and useful for classification. In the second step, namely classification step, KDE and Expectation Maximum (EM) algorithm are used to estimate class conditional density and the bandwidth of kernel function respectively. The experimental results show that the proposed method can achieve satisfactory performance over the real observational data of Sloan Digital Sky Survey (SDSS). © 2009 Copyright SPIE - The International Society for Optical Engineering.

关键词:

Computer vision Data handling Statistics Principal component analysis Spectrum analysis

作者机构:

  • [ 1 ] [Yang, Jin-Fu]School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Li, Ming-Ai]School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China
  • [ 3 ] [Yu, Naigong]School of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关文章:

来源 :

ISSN: 0277-786X

年份: 2009

卷: 7496

语种: 英文

被引次数:

WoS核心集被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:160/4540192
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司