收录:
摘要:
Multiple phases with phase to phase transitions are important characteristics of many batch processes. The linear characteristics between phases are taken into consideration in the traditional algorithms while nonlinearities are neglected, which can lead to inaccuracy and inefficiency in monitoring. The focus of this paper is nonlinear multi-phase batch processes. A similarity metric is defined based on kernel entropy component analysis (KECA). A KECA similarity-based method is proposed for phase division and fault monitoring. First, nonlinear characteristics can be extracted in feature space via performing KECA on each preprocessed time-slice data matrix. Then phase division is achieved with the similarity variation of the extracted feature information. Then, a series of KECA models and slide-KECA models are established for steady and transitions phases respectively, which can reflect the diversity of transitional characteristics objectively and preferably deal with the stage-transition monitoring problem in multistage batch processes. Next, in order to overcome the problem that the traditional contribution plot cannot be applied to the kernel mapping space, a nonlinear contribution plot diagnosis algorithm is proposed, which is easier, more intuitive and implementable compared with the traditional one. Finally, simulations are performed on penicillin fermentation and industrial application. Specifically, the proposed method detects the abnormal agitation power and the abnormal substrate supply at 47 h and 86 h, respectively. Compared with traditional methods, it has better real-time performance and higher efficiency. Results demonstrate the ability of the proposed method to detect faults accurately and effectively in practice.
关键词:
通讯作者信息:
电子邮件地址: