• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Du (Wang, Du.) | Ji, Changwei (Ji, Changwei.) (学者:纪常伟) | Wang, Shuofeng (Wang, Shuofeng.) | Yang, Jinxin (Yang, Jinxin.) | Tang, Chuanqi (Tang, Chuanqi.)

收录:

EI Scopus SCIE

摘要:

The influences of wall are important in practical combustion devices. In present study, the propagating processes of near wall ignited laminar methane/hydrogen/air flame were explored under different hydrogen fractions in a constant volume combustion vessel mimicking engine geometry. Results showed that both effects of heat losses and wall compression cause difference of local flame speed at different directions. The flow inside burned zone induced by compression accelerates local flame speed at direction opposing to the wall, makes the local flame speed higher than freely propagating laminar flame speed. Meanwhile, flame shape changing process was quantified by fitted ellipses. It was found that flame shapes are strongly affected by the wall compression but not obviously influenced by hydrogen addition. Hydrogen addition exacerbated flame instabilities, notably improved the local and global flame speeds due to both increase of laminar flame speed and flow velocity inside burned zone. The maximum local speed increase from 258 cm/s for 20% hydrogen fraction to 695 cm/s for 80% hydrogen fraction. Maximum combustion pressure and maximum pressure rise rate were slightly increased by hydrogen addition. On contrary, the combustion duration notably decreased nearly 3 times when hydrogen fraction increased from 20% to 80%. (C) 2018 Elsevier Ltd. All rights reserved.

关键词:

Combustion Flame Hydrogen Laminar Methane Wall effect

作者机构:

  • [ 1 ] [Ji, Changwei]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China
  • [ 2 ] [Ji, Changwei]Beijing Univ Technol, Collaborat Innovat Ctr Elect Vehicles Beijing, Beijing 100124, Peoples R China

通讯作者信息:

  • 纪常伟

    [Ji, Changwei]Beijing Univ Technol, Coll Environm & Energy Engn, Key Lab Beijing Reg Air Pollut Control, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ENERGY

ISSN: 0360-5442

年份: 2019

卷: 168

页码: 1094-1103

9 . 0 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:52

JCR分区:1

被引次数:

WoS核心集被引频次: 16

SCOPUS被引频次: 13

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:3129/2974550
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司