收录:
摘要:
In this study, we explore the approach using Support Vector Machines (SVM) to predict the high-level cognitive states based on fMRI data. On the base of taking voxels in the brain regions related to problem solving as the features, we compare two feature extraction methods, one is based on the cumulative changes of blood oxygen level dependent (BOLD) signal, and the other is based on the values at each time point in the BOLD signal time course of each trial. We collected the fMRI data while participants were performing a simplified 4*4 Sudoku problems, and predicted the complexity (easy vs. complex) or the steps (1-step vs. 2-steps) of the problem from fMRI data using these two feature extraction methods, respectively. Both methods can produce quite high accuracy, and the performance of the latter method is better than the former. The results indicate that SVM can be used to predict high-level cognitive states from fMRI data. Moreover, the feature extraction based on serial signal change of BOLD effect can predict cognitive states better because it can use abundant and typical information kept in BOLD effect data. © 2009 Springer-Verlag Berlin Heidelberg.
关键词:
通讯作者信息:
电子邮件地址: