Indexed by:
Abstract:
Dissolved Oxygen (DO) is one of the most important parameters describing biochemical process in wastewater treatment. It is usually measured with dissolved oxygen meters, and currently galvanic and polarographic electrodes are the predominant methods. Expensive, membrane surface inactivation, and especially need of cleaning and calibrating very frequently are common disadvantages of electrode-type measuring sensors. In our work, a novel method for classifying and further measuring dissolved oxygen based-on image processing and artificial neural network was researched. Pictures of the water-body surface in aeration basins are captured and transformed into HSI space data. These data plus the correspondent measured DO values are processed with a neural network. Using the well-trained neural network, a satisfied result for classifying dissolved oxygen according to the water-body pictures has been realized. ©2009 IEEE.
Keyword:
Reprint Author's Address:
Email:
Source :
Year: 2009
Page: 4149-4153
Language: English
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 3
Affiliated Colleges: