Indexed by:
Abstract:
Laser forming is a promising technology to deform the work pieces by thermal stress caused by laser irradiations. Up to date, considerable investigations have been carried out to clarify the process, however, much attention has been focused on monolithic alloys and relatively less work has been done on the MMCs. In the present study, interface debonding of MMCs in laser forming was experimentally and numerically investigated. A microstructure integrated 3D FEM was developed to simulate the deformation behavior of MMCs in laser forming. And a periodic multi-particle cell model was firstly used to determine the damage evolution under uniaxial tensile loading, where the onset of damage was assumed to follow a maximum normal stress criterion. The damage evolution of the MMCs was subsequently coupled to the numerical model to calculate the deformation behavior of the composite in laser forming. It was found that the simulated results were in reasonable good agreement with the experimental data. And some significant findings were discussed in the paper.
Keyword:
Reprint Author's Address:
Email:
Source :
Year: 2009
Volume: 102
Page: 225-232
Language: English
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1