• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Chunrong (Wang, Chunrong.) | Zhao, Jing (Zhao, Jing.) (学者:赵京) | Xia, Erdong (Xia, Erdong.)

收录:

EI Scopus SCIE

摘要:

This paper describes the design of a novel multi-functional rescue end-effector with tonging, shearing and grasping capabilities to meet the demands of urban catastrophe rescue applications. The tonging and shearing form and the grasping form of the end-effector are analysed. The two forms are determined using the transformations of their grasping mechanisms. Four objectives (to maximize shearing space, minimize mass, minimize the equivalent stress and minimize deformation) are proposed for selection of the optimal grasping mechanism structure. Additional objectives also involve the end-effector's structural strength and kinematic characteristics. A nested optimization structure that is composed of the non-dominated sorting genetic algorithm II (NSGA-II) and finite element analysis is proposed to perform multi-domain and multi-objective optimization of the end-effector. To improve the optimization efficiency, a traditional synthesis technique and a sensitivity analysis are applied to reduce the outer and inner numbers of the design variables. Simulation results indicate that the values of the four target objectives are superior to those before optimization and two referenced objectives, and the end-effector mass in particular, can evidently be reduced.

关键词:

design multi-domain optimization Multi-functional rescue end-effector multi-objective optimization nested optimization

作者机构:

  • [ 1 ] [Wang, Chunrong]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Zhao, Jing]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Chunrong]Sanming Univ, Sch Mech & Elect Engn, Sanming, Peoples R China
  • [ 4 ] [Xia, Erdong]Sanming Univ, Sch Mech & Elect Engn, Sanming, Peoples R China

通讯作者信息:

  • 赵京

    [Zhao, Jing]Beijing Univ Technol, Coll Mech Engn & Appl Elect Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE

ISSN: 0954-4062

年份: 2019

期: 3

卷: 233

页码: 1032-1044

2 . 0 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:52

JCR分区:3

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:1372/2914126
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司