• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chen, Haoran (Chen, Haoran.) | Sun, Yanfeng (Sun, Yanfeng.) (学者:孙艳丰) | Gao, Junbin (Gao, Junbin.) | Hu, Yongli (Hu, Yongli.) (学者:胡永利) | Yin, Baocai (Yin, Baocai.) (学者:尹宝才)

收录:

EI Scopus SCIE

摘要:

Partial least squares regression (PLSR) has been a popular technique to explore the linear relationship between two data sets. However, all existing approaches often optimize a PLSR model in Euclidean space and take a successive strategy to calculate all the factors one by one for keeping the mutually orthogonal PLSR factors. Thus, a suboptimal solution is often generated. To overcome the shortcoming, this paper takes statistically inspired modification of PLSR (SIMPLSR) as a representative of PLSR, proposes a novel approach to transform SIMPLSR into optimization problems on Riemannian manifolds, and develops corresponding optimization algorithms. These algorithms can calculate all the PLSR factors simultaneously to avoid any suboptimal solutions. Moreover, we propose sparse SIMPLSR on Riemannian manifolds, which is simple and intuitive. A number of experiments on classification problems have demonstrated that the proposed models and algorithms can get lower classification error rates compared with other linear regression methods in Euclidean space. We have made the experimental code public at https://github.com/Haoran2014.

关键词:

Classification Riemannian conjugate gradient method Partial least squares regression (PLSR) Stiefel manifolds Grassmann manifolds Riemannian manifolds

作者机构:

  • [ 1 ] [Chen, Haoran]Beijing Univ Technol, Beijing Key Lab Multimedia & Intelligent Software, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Sun, Yanfeng]Beijing Univ Technol, Beijing Key Lab Multimedia & Intelligent Software, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Hu, Yongli]Beijing Univ Technol, Beijing Key Lab Multimedia & Intelligent Software, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Sun, Yanfeng]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Hu, Yongli]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China
  • [ 6 ] [Gao, Junbin]Univ Sydney, Discipline Business Analyt, Business Sch, Sydney, NSW 2006, Australia
  • [ 7 ] [Yin, Baocai]Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian 116024, Peoples R China

通讯作者信息:

  • 孙艳丰

    [Sun, Yanfeng]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

ISSN: 2162-237X

年份: 2019

期: 2

卷: 30

页码: 588-600

1 0 . 4 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:147

JCR分区:1

被引次数:

WoS核心集被引频次: 28

SCOPUS被引频次: 30

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:1091/3905499
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司