• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Shaofan (Wang, Shaofan.) | Xin, Yongjia (Xin, Yongjia.) | Kong, Dehui (Kong, Dehui.) (学者:孔德慧) | Yin, Baocai (Yin, Baocai.) (学者:尹宝才)

收录:

EI Scopus SCIE

摘要:

Human poses admit complicated articulations and multigranular similarity. Previous works on learning human pose metric utilize sparse models, which concentrate large weights on highly similar poses and fail to depict an overall structure of poses with multigranular similarity. Moreover, previous works require a large number of similar/dissimilar annotated pairwise poses, which is an tedious task and remains inaccurate due to different subjective judgments of experts. Motivated by graph-based neighbor assignment techniques, we propose an unsupervised model called sparsity locality preserving projection with adaptive neighbors (SLPPAN), for learning human pose distance metric. By using a property of the graph Laplacian, SLPPAN introduces a fixed-rank constraint to enforce an adaptive graph structure of poses and learns the neighbor assignment, the similarity measurement, and pose metric simultaneously. Experiments on pose retrieval of the CMU Mocap database demonstrate that SLPPAN outperforms traditional pose metric learning methods by capturing viewpoint variations of human poses. Experiments on keyframe extraction of the MSRAction3D database demonstrate that SLPPAN outperforms current methods by precisely detecting important frames of action sequences.

关键词:

unsupervised learning locality preserving projection distance metric sparse representation Pose similarity

作者机构:

  • [ 1 ] [Wang, Shaofan]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing 100124, Peoples R China
  • [ 2 ] [Xin, Yongjia]Tencent Technol Co Ltd, Nat Language Proc, Beijing 100080, Peoples R China
  • [ 3 ] [Kong, Dehui]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Yin, Baocai]Dalian Univ Technol, Fac Elect Informat & Elect Engn, Dalian 116024, Peoples R China

通讯作者信息:

  • 孔德慧

    [Kong, Dehui]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Multimedia & Intelligent Software, Beijing Adv Innovat Ctr Future Internet Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON MULTIMEDIA

ISSN: 1520-9210

年份: 2019

期: 2

卷: 21

页码: 314-327

7 . 3 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:147

JCR分区:1

被引次数:

WoS核心集被引频次: 8

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:315/4297318
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司