• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Dingyuan (Li, Dingyuan.) | Liu, Fu (Liu, Fu.) | Qiao, Junfei (Qiao, Junfei.) (学者:乔俊飞) | Li, Rong (Li, Rong.)

收录:

EI Scopus SCIE CSCD

摘要:

Echo State Network (ESN) is a recurrent neural network with a large, randomly generated recurrent part called the dynamic reservoir. Only the output weights are modified during training. However, proper balancing of the trade-off between the structure and performance for ESN remains a difficult task. In this paper, a structure optimized method for ESN based on contribution is proposed to simplify its network structure and improve its performance. First, we evaluate the contribution of reservoir neurons. Second, we present a pruning mechanism to remove the unimportant connection weights of reservoir neurons with low contribution. Finally, the new output weights are learned with the pseudo inverse method. The novel optimized ESN, named C-ESN, is tested on a Lorenz chaotic time-series prediction and an actual municipal sewage treatment system. The simulation results show that the C-ESN can have better prediction and generalization performance than ESN.

关键词:

neural network time-series prediction structural design

作者机构:

  • [ 1 ] [Li, Dingyuan]Jilin Univ, Coll Commun Engn, Changchun 130022, Jilin, Peoples R China
  • [ 2 ] [Liu, Fu]Jilin Univ, Coll Commun Engn, Changchun 130022, Jilin, Peoples R China
  • [ 3 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Rong]Beijing Vocat Coll Agr, Dept Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Liu, Fu]Jilin Univ, Coll Commun Engn, Changchun 130022, Jilin, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

TSINGHUA SCIENCE AND TECHNOLOGY

ISSN: 1007-0214

年份: 2019

期: 1

卷: 24

页码: 97-105

6 . 6 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:147

JCR分区:3

被引次数:

WoS核心集被引频次: 9

SCOPUS被引频次: 12

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:389/3901630
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司