• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Piguang (Wang, Piguang.) (学者:王丕光) | Zhao, Mi (Zhao, Mi.) (学者:赵密) | Du, Xiuli (Du, Xiuli.) (学者:杜修力)

收录:

Scopus SCIE

摘要:

An accurate and efficient numerical model is developed to calculate the earthquake-induced hydrodynamic pressure on uniform vertical cylinders with an arbitrary cross section surrounded by water. According to the boundary conditions and using the variables separation method, the three-dimensional Laplace equation governing the incompressible water is transformed into a two-dimensional (2D) Helmholtz equation. As a key element, a circular boundary surrounding the structures is introduced so that the computational domain is partitioned into unbounded and bounded domains. The unbounded domain is simulated by an exact artificial boundary condition, which is derived by using the separation variable method. The impedance matrix of the entire domain is obtained by the finite-element method. The hydrodynamic forces on rectangular and round-ended cylinders are calculated, which can be modeled as the product of an added mass of water and the acceleration of the cylinder. However, these complicated expressions of the hydrodynamic forces are not suitable for engineering application. Therefore, simplified formulas for the added mass of the round-ended and rectangular cylinders are obtained by the curve-fitting method. The results indicate that the precision of the present added mass formulas is enough for engineering applications.

关键词:

Added mass Arbitrary cross section Artificial boundary condition Curve fitting Finite element Hydrodynamic pressure

作者机构:

  • [ 1 ] [Wang, Piguang]Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Zhao, Mi]Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Du, Xiuli]Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • 赵密

    [Zhao, Mi]Beijing Univ Technol, Coll Architecture & Civil Engn, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF ENGINEERING MECHANICS

ISSN: 0733-9399

年份: 2019

期: 2

卷: 145

3 . 3 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:52

JCR分区:2

被引次数:

WoS核心集被引频次: 35

SCOPUS被引频次: 43

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:847/2915497
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司