• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zong, DongJun (Zong, DongJun.) | Mao, GuoJun (Mao, GuoJun.) | Wu, XinDong (Wu, XinDong.)

收录:

EI Scopus

摘要:

High speed, continuousness and infinity are the features in processing network data. With these characteristics, mining the data streams of network accesses is important and useful for discovering intrusion patterns. Based on data stream mining techniques, this paper proposes a new intrusion detection model that combines anomaly detection with misuse detection. Also, a new data structure named MaxFP-Tree and an efficient algorithm called ID-MaxFP are presented to provide the key solutions for finding maximal frequent itemsets from data streams. Experimental results show that these methods can achieve effective intrusion detection results and an efficient mining performance in time and space usages.

关键词:

Trees (mathematics) Intrusion detection Data streams Anomaly detection Data mining

作者机构:

  • [ 1 ] [Zong, DongJun]College of Computer, Beijing University of Technology, Beijing 100124, China
  • [ 2 ] [Mao, GuoJun]College of Computer, Beijing University of Technology, Beijing 100124, China
  • [ 3 ] [Wu, XinDong]Department of Computer Science, University of Vermont, Burlington, VT 05405, United States

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

年份: 2008

页码: 398-403

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 6

在线人数/总访问数:107/3904419
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司