• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Tang, Fawei (Tang, Fawei.) | Liu, Xuemei (Liu, Xuemei.) | Wang, Haibin (Wang, Haibin.) | Hou, Chao (Hou, Chao.) | Lu, Hao (Lu, Hao.) | Nie, Zuoren (Nie, Zuoren.) (学者:聂祚仁) | Song, Xiaoyan (Song, Xiaoyan.) (学者:宋晓艳)

收录:

EI Scopus SCIE PubMed

摘要:

A model coupling first principles and thermodynamics was developed to describe the thermal stability of a nanograin structure in solid solution alloys. The thermodynamic functions of solute segregation and conditions for thermal stabilization were demonstrated for both strongly and weakly solute-segregating systems. The dependence of segregation behavior on the grain size, solute concentration and temperature was quantified, where the parameters to control destabilization of the nanograin structure at a given temperature were predicted. For the first time it was found that there exists a transformation from the single-extreme to dual-extreme rule of the total Gibbs free energies of the solid solution systems with the decrease of solute concentration or increase of temperature. The model calculations were confirmed quantitatively by the experimental results, and a nanocrystalline W-10 at%Sc solid solution with a highly stable grain structure in a broad range from room temperature to 1600 K was prepared. The universal mechanism disclosed in this study will facilitate the design of nanocrystalline alloys with high thermal stability through matching of the doping element and the initial grain size.

关键词:

作者机构:

  • [ 1 ] [Tang, Fawei]Beijing Univ Technol, Educ Minist China, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Xuemei]Beijing Univ Technol, Educ Minist China, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Haibin]Beijing Univ Technol, Educ Minist China, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Beijing 100124, Peoples R China
  • [ 4 ] [Hou, Chao]Beijing Univ Technol, Educ Minist China, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Beijing 100124, Peoples R China
  • [ 5 ] [Lu, Hao]Beijing Univ Technol, Educ Minist China, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Beijing 100124, Peoples R China
  • [ 6 ] [Nie, Zuoren]Beijing Univ Technol, Educ Minist China, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Beijing 100124, Peoples R China
  • [ 7 ] [Song, Xiaoyan]Beijing Univ Technol, Educ Minist China, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Beijing 100124, Peoples R China

通讯作者信息:

  • 宋晓艳

    [Song, Xiaoyan]Beijing Univ Technol, Educ Minist China, Coll Mat Sci & Engn, Key Lab Adv Funct Mat, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

NANOSCALE

ISSN: 2040-3364

年份: 2019

期: 4

卷: 11

页码: 1813-1826

6 . 7 0 0

JCR@2022

ESI学科: PHYSICS;

ESI高被引阀值:123

JCR分区:1

被引次数:

WoS核心集被引频次: 27

SCOPUS被引频次: 27

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:557/4962090
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司