• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Xinfeng (Zhang, Xinfeng.) | Zhuo, Li (Zhuo, Li.) | David, Dagan Feng (David, Dagan Feng.)

收录:

EI Scopus

摘要:

Binary hyper-sphere support vector machine (SVM) is a new method for data description. Its weakness is that the margin between two classes of samples is zero or an uncertain value, which affects the classifier's generalization performance to some extent. So a generalized hyper-sphere SVM (GHSSVM) is provided in this paper. By introducing the parameter n and b (n>b), the margin which is greater than zero may be obtained. The experimental results show the proposed classifier may have better generalization performance and the less experimental risk than the hyper-sphere SVM in the references. © 2008 IEEE.

关键词:

Support vector machines Spheres Signal processing Neural networks

作者机构:

  • [ 1 ] [Zhang, Xinfeng]Signal and Information Processing Lab., Beijing University of Technology, Beijing, 100022, China
  • [ 2 ] [Zhang, Xinfeng]School of Information Technologies, J12, University of Sydney, NSW 2006, Australia
  • [ 3 ] [Zhang, Xinfeng]Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
  • [ 4 ] [Zhuo, Li]Signal and Information Processing Lab., Beijing University of Technology, Beijing, 100022, China
  • [ 5 ] [David, Dagan Feng]School of Information Technologies, J12, University of Sydney, NSW 2006, Australia
  • [ 6 ] [David, Dagan Feng]Department of Electronic and Information Engineering, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

年份: 2008

页码: 470-475

语种: 英文

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 1

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:620/4749891
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司