• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chen, Yun (Chen, Yun.) | Ma, Guowei (Ma, Guowei.) | Wang, Huidong (Wang, Huidong.) | Li, Tuo (Li, Tuo.) | Wang, Yang (Wang, Yang.)

收录:

EI Scopus SCIE

摘要:

The advantages of using supercritical carbon dioxide as working fluid in geothermal development (potential carbon dioxide geological storage and relatively high mobility) have attracted considerable interest in the simulation of a carbon dioxide-based enhanced geothermal system. This study proposed a numerical model based on the three-dimensional unified pipe-network method to simulate the two-phase flow and thermal-hydraulic coupled process in a carbon dioxide-based enhanced geothermal system considering complex fracture networks. The van Genuchten capillary model and relative permeability model are adopted to characterize the displacement process in both the fractures and the rock matrix. A pipe equivalent technique is employed to discretize the governing equations for the two-phase flow and the heat transmission with the local thermal non-equilibrium concept. Two-phase fluid transfer at material interfaces is solved based on a pipe superposition principle in a pipe-network system. Discretized forms are solved by a sequential implicit time scheme alleviating the Courant-Friedrichs-Lewy condition in fracture networks. The proposed model is verified against analytical results for the Buckley-Leverett problem. Saturation evolution curves at different time steps converge to the analytical solutions as the node number increases. Sensitivity analyses using a doublet system horizontally embedded with one large fracture indicate that the capillary contrast between the rock matrix and the fractures and the injection flow rate pose impacts on the produced carbon dioxide saturation and the outlet fluid temperature drawdown. The simulation of circulating processes considering randomly generated fracture networks demonstrates that the more promising potential of heat extraction can be achieved using the pure carbon dioxide as the working fluid instead of cooled water. Analyzing the effects of the initial reservoir carbon dioxide saturation shows that increasing the reservoir carbon dioxide saturation before heat excavation can improve the heat production. Both increase the matrix permeability and the fracture aperture enhances the performance of the heat extraction and the carbon dioxide sequestration.

关键词:

Heat extraction Complex fracture networks Unified pipe-network method Carbon dioxide-based enhanced geothermal system Carbon dioxide sequestration

作者机构:

  • [ 1 ] [Ma, Guowei]Hebei Univ Technol, Sch Civil & Transportat Engn, 5340 Xiping Rd, Tianjin 300401, Peoples R China
  • [ 2 ] [Chen, Yun]Univ Western Australia, Sch Civil Environm & Min Engn, 35 Stirling Highway, Crawley, WA 6009, Australia
  • [ 3 ] [Ma, Guowei]Univ Western Australia, Sch Civil Environm & Min Engn, 35 Stirling Highway, Crawley, WA 6009, Australia
  • [ 4 ] [Wang, Huidong]Univ Western Australia, Sch Civil Environm & Min Engn, 35 Stirling Highway, Crawley, WA 6009, Australia
  • [ 5 ] [Li, Tuo]Univ Western Australia, Sch Civil Environm & Min Engn, 35 Stirling Highway, Crawley, WA 6009, Australia
  • [ 6 ] [Wang, Yang]Univ Western Australia, Sch Civil Environm & Min Engn, 35 Stirling Highway, Crawley, WA 6009, Australia
  • [ 7 ] [Wang, Huidong]Beijing Univ Technol, Coll Architechture & Civil Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • 马国伟

    [Ma, Guowei]Hebei Univ Technol, Sch Civil & Transportat Engn, 5340 Xiping Rd, Tianjin 300401, Peoples R China;;[Ma, Guowei]Univ Western Australia, Sch Civil Environm & Min Engn, 35 Stirling Highway, Crawley, WA 6009, Australia

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ENERGY CONVERSION AND MANAGEMENT

ISSN: 0196-8904

年份: 2019

卷: 180

页码: 1055-1067

1 0 . 4 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:136

JCR分区:1

被引次数:

WoS核心集被引频次: 52

SCOPUS被引频次: 54

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

在线人数/总访问数:276/3890866
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司