Indexed by:
Abstract:
Distance metric learning and nonlinear dimensionality reduction are two interesting and active topics in recent years. However, the connection between them is not thoroughly studied yet. In this paper, a transductive framework of distance metric learning is proposed and its close connection with many nonlinear spectral dimensionality reduction methods is elaborated. Furthermore, we prove a representer theorem for our framework, linking it with function estimation in an RKHS, and making it possible for generalization to unseen test samples. In our framework, it suffices to solve a sparse eigenvalue problem, thus datasets with 105 samples can be handled. Finally, experiment results on synthetic data, several UCI databases and the MNIST handwritten digit database are shown.
Keyword:
Reprint Author's Address:
Email:
Source :
Year: 2007
Volume: 227
Page: 513-520
Language: English
Cited Count:
SCOPUS Cited Count: 13
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 0
Affiliated Colleges: