• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Huiqing (Zhang, Huiqing.) | Peng, Du (Peng, Du.) | Chen, Weiling (Chen, Weiling.) | Xu, Xin (Xu, Xin.)

收录:

EI Scopus SCIE

摘要:

Air pollution is a crucial environmental problem, especially the fine particulate matter (PM2.5) which has become one of the focal points. PM2.5 is a complex pollutant which can intrude the lungs and threaten people's health during the whole lives. In order to enable people to know the PM2.5 index of their surroundings at any time, an image-based PM2.5 predictor with saliency detection (IPPS) is proposed. The proposed predictor first obtains the non-salient regions based on saliency detection technologies. Then, the authors extract two features of the entropy and intensity values of non-salient image saturation map. Finally, they multiply these two features into the approximation of PM2.5 concentration. Experiments show that the proposed IPPS is superior in accuracy and efficiency.

关键词:

atmospheric optics saliency detection technologies complex pollutant air pollution image-based PM2 aerosols crucial environmental problem regression analysis nonsalient image saturation map fine particulate matter nonsalient regions focal points statistics atmospheric composition

作者机构:

  • [ 1 ] [Zhang, Huiqing]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Peng, Du]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Xu, Xin]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Chen, Weiling]Xiamen Univ, Key Lab Underwater Acoust Commun & Marine Informa, Xiamen, Peoples R China

通讯作者信息:

  • [Zhang, Huiqing]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ELECTRONICS LETTERS

ISSN: 0013-5194

年份: 2019

期: 1

卷: 55

页码: 30-31

1 . 1 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:136

被引次数:

WoS核心集被引频次: 8

SCOPUS被引频次: 10

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:230/4525343
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司