• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Tao, Jun-Yuan (Tao, Jun-Yuan.) | Li, De-Sheng (Li, De-Sheng.) (学者:李德胜)

收录:

EI Scopus

摘要:

Reinforcement learning is a powerful method for solving sequential decision making problems. But it is difficult to apply to practical problems such as multi-agent systems with continuous state space problems. In this paper we present a cooperative strategy learning method to solve the problem. It combines WoLF-PHC algorithms with function approximation of RL techniques. By this method an agent could learn cooperative behavior in the multi-agent environment with continuous state space. Using a subtask of RoboCup soccer, Keepaway, we demonstrate the effective of this learning method and the experiment results show that the algorithm converges. © 2006 IEEE.

关键词:

Approximation theory Decision making Learning algorithms Multi agent systems Problem solving State space methods

作者机构:

  • [ 1 ] [Tao, Jun-Yuan]Department of Automatic Measurement and Control, Harbin Institute of Technology, Harbin, China
  • [ 2 ] [Li, De-Sheng]Department of Mechanical and Electronic Engineering, Beijing University of Technology, Beijing, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2006

卷: 2006

页码: 2107-2111

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 13

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:1497/3634722
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司