• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Yuanyuan (Li, Yuanyuan.) | Cai, Yiheng (Cai, Yiheng.) | Liu, Jiaqi (Liu, Jiaqi.) | Lang, Shinan (Lang, Shinan.) | Zhang, Xinfeng (Zhang, Xinfeng.)

收录:

EI Scopus SCIE

摘要:

Anomaly detection in video surveillance is challenging due to the variety of anomaly types and definitions, which limit the use of supervised techniques. As such, auto-encoder structures, a type of classical unsupervised method, have recently been utilized in this field. These structures consist of an encoder followed by a decoder and are typically adopted to restructure a current input frame or predict a future frame. However, regardless of whether a 2D or 3D autoencoder structure is adopted, only single-scale information from the previous layer is typically used in the decoding process. This can result in a loss of detail that could potentially be used to predict or reconstruct video frames. As such, this study proposes a novel spatio-temporal U-Net for frame prediction using normal events and abnormality detection using prediction error. This framework combines the benefits of U-Nets in representing spatial information with the capabilities of ConvLSTM for modeling temporal motion data. In addition, we propose a new regular score function, consisting of a prediction error for not only the current frame but also future frames, to further improve the accuracy of anomaly detection. Extensive experiments on common anomaly datasets, including UCSD (98 video clips in total) and CUHK Avenue (30 video clips in total), validated the performance of the proposed technique and we achieved 96.5% AUC for the Ped2 dataset, which is much better than existing autoencoder-based and U-Net-based methods.

关键词:

video ConvLSTM U-Net Anomaly detection

作者机构:

  • [ 1 ] [Li, Yuanyuan]Beijing Univ Technol, Coll Informat & Commun Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Cai, Yiheng]Beijing Univ Technol, Coll Informat & Commun Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Liu, Jiaqi]Beijing Univ Technol, Coll Informat & Commun Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Lang, Shinan]Beijing Univ Technol, Coll Informat & Commun Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Zhang, Xinfeng]Beijing Univ Technol, Coll Informat & Commun Engn, Beijing 100124, Peoples R China

通讯作者信息:

  • [Cai, Yiheng]Beijing Univ Technol, Coll Informat & Commun Engn, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE ACCESS

ISSN: 2169-3536

年份: 2019

卷: 7

页码: 172425-172432

3 . 9 0 0

JCR@2022

JCR分区:1

被引次数:

WoS核心集被引频次: 36

SCOPUS被引频次: 50

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:1041/4290659
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司