• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Xin (Li, Xin.) | Li, Xiao-Li (Li, Xiao-Li.) (学者:李晓理) | Wang, Kang (Wang, Kang.) | Li, Yang (Li, Yang.)

收录:

EI SCIE

摘要:

Most multi-objective particle swarm optimization algorithms, which have demonstrated their good performance on various practical problems involving two or three objectives, face significant challenges in complex problems. For overcoming this challenges, a multi-objective particle swarm optimization algorithm based on enhanced selection(ESMOPSO) is proposed. In order to increase the ability of exploration and exploitation, enhanced selection strategy is designed to update personal optimal particles, and objective function weighting is used to update global optimal particle adaptively. In addition, R2 indicator is incorporated into the achievement scalarizing function to layer particles in archive, which promotes the archive update. Besides, Gaussian mutation strategy is designed to avoid particles falling into local optimum, and polynomial mutation is applied in archive to increase the diversity of elite solutions. The performance of the proposed algorithm is validated and compared with some state-of-the-art algorithms on a number of test problems. Experimental results demonstrate that ESMOPSO algorithm shows very competitive performance when dealing with complex MOPs.

关键词:

achievement scalarizing function Multi-objective particle swarm enhanced selection objective function weighting

作者机构:

  • [ 1 ] [Li, Xin]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Kang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Xiao-Li]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Xiao-Li]Beijing Univ Technol, Engn Res Ctr Digital Community, Minist Educ, Beijing 100124, Peoples R China
  • [ 5 ] [Li, Yang]Commun Univ China, Sch Int Studies, Beijing 100024, Peoples R China

通讯作者信息:

  • 李晓理

    [Li, Xiao-Li]Beijing Univ Technol, Beijing Adv Innovat Ctr Future Internet Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China;;[Li, Xiao-Li]Beijing Univ Technol, Engn Res Ctr Digital Community, Minist Educ, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

IEEE ACCESS

ISSN: 2169-3536

年份: 2019

卷: 7

页码: 168091-168103

3 . 9 0 0

JCR@2022

JCR分区:1

被引次数:

WoS核心集被引频次: 8

SCOPUS被引频次: 14

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:1131/3902519
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司