• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yu, Anfeng (Yu, Anfeng.) | Zhang, Jiedong (Zhang, Jiedong.) | Dang, Wenyi (Dang, Wenyi.) | Zhang, Huiqing (Zhang, Huiqing.)

收录:

EI SCIE

摘要:

The flare, which aims to burn all kinds of waste gas produced by petrochemical enterprises, is an important facility for plants to keep safe and prevent harming the environment. However, when the exhaust gas is not sufficiently burned, black smoke will be produced in the flare system and endanger air quality and human health. So, as a crucial task, reducing the emission of flare black smoke is attracting a growing amount of research attention. In a typical flare smoke reduction system, a high-resolution smoke image is greatly beneficial to smoke recognition and analysis. But the smoke image usually encounters the low-resolution problem. Accordingly, in this paper we propose a super-resolution method specific for smoke images, which is called smoke images upsampling method (SIUM). Considering the texture and edge characteristics of the smoke images, the proposed SIUM learns a mapping between the low-resolution images and the associated high-resolution images. Experimental results demonstrate that our proposed SIUM is prominently superior to relevant state-of-the-art technologies when applied to upsample low-resolution smoke images.

关键词:

upsampling Smoke images air pollution deep convolutional network

作者机构:

  • [ 1 ] [Yu, Anfeng]SINOPEC Res Inst Safety Engn, State Key Lab Safety & Control Chem, Qingdao 266071, Shandong, Peoples R China
  • [ 2 ] [Zhang, Jiedong]SINOPEC Res Inst Safety Engn, State Key Lab Safety & Control Chem, Qingdao 266071, Shandong, Peoples R China
  • [ 3 ] [Dang, Wenyi]SINOPEC Res Inst Safety Engn, State Key Lab Safety & Control Chem, Qingdao 266071, Shandong, Peoples R China
  • [ 4 ] [Zhang, Huiqing]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Zhang, Jiedong]SINOPEC Res Inst Safety Engn, State Key Lab Safety & Control Chem, Qingdao 266071, Shandong, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE ACCESS

ISSN: 2169-3536

年份: 2019

卷: 7

页码: 138932-138940

3 . 9 0 0

JCR@2022

JCR分区:1

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:831/3913076
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司