• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wu, Tong (Wu, Tong.) | Zheng, Kangfeng (Zheng, Kangfeng.) | Xu, Guangzhi (Xu, Guangzhi.) | Wu, Chunhua (Wu, Chunhua.) | Wang, Xiujuan (Wang, Xiujuan.)

收录:

Scopus SCIE

摘要:

As a kind of behavioural characteristic, keystroke features are crucial to the accuracy of user identification system using shallow machine learning algorithms. Filter and wrapper feature selection algorithms are the two most important methods. The information gain and particle swarm optimisation algorithm represent the two feature optimisation methods, respectively. In this paper, new hybrid binary particle swarm optimisation methods combined with information gain theory are proposed in association with opposite-based learning and distributed techniques. The converted information gain values act as weight coefficients to adaptively adjust the flight speed of particles. The support vector machine (SVM) algorithm is applied to evaluate the performance of feature optimisation in terms of user identification accuracy and feature reduction rate. Experimental results of three public keystroke datasets show that the proposed optimisation methods achieve better classification accuracy with fewer features than four existing optimisation methods.

关键词:

support vector machine opposite-based learning feature optimisation information gain binary particle swarm optimisation BPSO SVM keystroke dynamics user identification

作者机构:

  • [ 1 ] [Wu, Tong]Beijing Univ Posts & Telecommun, Sch Cyberspace Secur, Beijing 100876, Peoples R China
  • [ 2 ] [Zheng, Kangfeng]Beijing Univ Posts & Telecommun, Sch Cyberspace Secur, Beijing 100876, Peoples R China
  • [ 3 ] [Wu, Chunhua]Beijing Univ Posts & Telecommun, Sch Cyberspace Secur, Beijing 100876, Peoples R China
  • [ 4 ] [Xu, Guangzhi]Beijing Univ Posts & Telecommun, Sch Automat, Beijing 100876, Peoples R China
  • [ 5 ] [Wang, Xiujuan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Zheng, Kangfeng]Beijing Univ Posts & Telecommun, Sch Cyberspace Secur, Beijing 100876, Peoples R China

查看成果更多字段

相关关键词:

来源 :

INTERNATIONAL JOURNAL OF BIO-INSPIRED COMPUTATION

ISSN: 1758-0366

年份: 2019

期: 3

卷: 14

页码: 171-180

3 . 5 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:147

JCR分区:2

被引次数:

WoS核心集被引频次: 6

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:219/4609412
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司