• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Too, Edna C. (Too, Edna C..) | Li Yujian (Li Yujian.) | Kwao, Pius (Kwao, Pius.) | Njuki, Sam (Njuki, Sam.) | Mosomi, Mugendi E. (Mosomi, Mugendi E..) | Kibet, Julius (Kibet, Julius.)

Indexed by:

EI Scopus SCIE

Abstract:

Deep learning is a field of Artificial Intelligence that has recently drawn a lot of attention with the desire to build up a quick, automatic and accurate system for image identification and classification. Deep learning serves as a fundamental part of modern computer vision solutions. However, as the architectures become deep and powerful new challenges in the process of training emerge. This includes the computational cost associated with training deep and large networks. In this work, the focus is on pruning and evaluation of state-of-the-art deep convolutional neural network for image-based plant disease and plants species classification. Pruning filters allow the reduction of parameters by removing unimportant filters and its feature maps. In this paper, the performance of pruned networks is evaluated across three datasets. It is observed that pruned DenseNet with Self-Normalization Neural Network (SNN) approach learns 2x faster compared to the initial DenseNet architecture. Additionally, pruning filters allow the reduction of the number of parameters and FLOPs by approximately 14% and 25% respectively. The aim is to create a fast and efficient model for the purpose of identification of plant diseases. Fast methods are desired for early identifications of diseases before damages occur. The proposed method achieves a satisfactory accuracy performance on PlantVillage, LeafSnap and Swedish-leaf dataset using held-out dataset. Our best pruned model gives an accuracy of 99.24%, 86.64%, and 97.5% on PlantVillage, LeafSnap, and Swedish-leaf datasets respectively.

Keyword:

Deep learning convolutional neural network pruning image-based disease classification

Author Community:

  • [ 1 ] [Too, Edna C.]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing, Peoples R China
  • [ 2 ] [Li Yujian]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing, Peoples R China
  • [ 3 ] [Kwao, Pius]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing, Peoples R China
  • [ 4 ] [Njuki, Sam]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing, Peoples R China
  • [ 5 ] [Kibet, Julius]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing, Peoples R China
  • [ 6 ] [Mosomi, Mugendi E.]Beijing Inst Technol, Betjing Lab Intelligence, Beijing, Peoples R China
  • [ 7 ] [Too, Edna C.]Chuka Univ, Dept Comp Sci, Chuka, Kenya
  • [ 8 ] [Too, Edna C.]Chuka Univ, ICT, Chuka, Kenya

Reprint Author's Address:

  • 李玉鑑

    [Li Yujian]Beijing Univ Technol, Coll Comp Sci & Technol, Beijing, Peoples R China

Show more details

Related Keywords:

Related Article:

Source :

JOURNAL OF INTELLIGENT & FUZZY SYSTEMS

ISSN: 1064-1246

Year: 2019

Issue: 3

Volume: 37

Page: 4003-4019

2 . 0 0 0

JCR@2022

ESI Discipline: COMPUTER SCIENCE;

ESI HC Threshold:147

JCR Journal Grade:3

Cited Count:

WoS CC Cited Count: 13

SCOPUS Cited Count: 17

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Affiliated Colleges:

Online/Total:234/5883222
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.