• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chang Peng (Chang Peng.) | Qiao Junfei (Qiao Junfei.) (学者:乔俊飞) | Zhang Xiangyu (Zhang Xiangyu.) | Lu Ruiwei (Lu Ruiwei.)

收录:

EI SCIE

摘要:

Fault monitoring of multiphase batch process is a difficult problem in multivariate statistical process monitoring. It needs to consider not only the process monitoring under stable mode, but also the transition mode with strong dynamic nonlinearity. Since the data has different correlations under different operating modes, it is necessary to establish different monitoring models for each process mode, especially the transition process between stable modes. The biggest feature is the dynamic characteristics of the variables. This feature can be better reflected in this transition using a time-varying covariance instead of a fixed covariance during the transition phase. In this paper, a new strategy for batch process sub-phase partition and process monitoring is proposed. Firstly, the three-dimensional data matrix is expanded into a new two-dimensional data according to the time slice expansion strategy. Secondly, the data of each time slice is transformed by Kernel Entropy Component Analysis (KECA), and then the production process is divided into phases according to the spatial angle of the kernel entropy. The production operation process is divided into a stable phase and a transition phase, and monitoring models are respectively established to monitor the production process; Finally, the application of the penicillin fermentation simulation platform shows that the Sub-MKECA phase partition results can reflect the mechanism of the batch process well, and the fault monitoring of the process shows that it can detect faults in time and accurately, and has high practicality value.

关键词:

kernel entropy component analysis fault diagnosis Batch process fault monitoring phase partition

作者机构:

  • [ 1 ] [Chang Peng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Chang Peng]Beijing Univ Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China

通讯作者信息:

  • [Chang Peng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

IEEE ACCESS

ISSN: 2169-3536

年份: 2019

卷: 7

页码: 125676-125687

3 . 9 0 0

JCR@2022

JCR分区:1

被引次数:

WoS核心集被引频次: 6

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

在线人数/总访问数:657/3900403
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司