• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Ying-Xin (Li, Ying-Xin.) | Zhu, Yun-Hua (Zhu, Yun-Hua.) | Ruan, Xiao-Gang (Ruan, Xiao-Gang.)

收录:

EI Scopus

摘要:

It is very important but difficult to identify which genes in gene expression data can contribute most to tumor subtype classification. An approach to select a small subset of genes for leukemia subtype classification from large scale gene expression profile is proposed in this paper. Having removed the noisy genes with little relevance to the classification task, the 'sequential floating forward search' method was employed to generate candidate feature subsets consisting of informative genes, and then, a support vector machine was employed as a classifier to select the optimal feature subset with minimum classification errors. The results of our experiment showed that all the samples can be correctly classified without any error with only five genes.

关键词:

Functions Genes Learning algorithms Learning systems Matrix algebra Pattern recognition

作者机构:

  • [ 1 ] [Li, Ying-Xin]Sch. Electron. Info. and Contr. Eng., Beijing University of Technology, Beijing 100022, China
  • [ 2 ] [Zhu, Yun-Hua]Sch. Electron. Info. and Contr. Eng., Beijing University of Technology, Beijing 100022, China
  • [ 3 ] [Ruan, Xiao-Gang]Sch. Electron. Info. and Contr. Eng., Beijing University of Technology, Beijing 100022, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

年份: 2004

卷: 3

页码: 1661-1664

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:141/3611501
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司