• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhong, Ning (Zhong, Ning.) | Liu, Chunnian (Liu, Chunnian.) | Yao, Y.Y. (Yao, Y.Y..) (学者:姚一豫) | Ohshima, Muneaki (Ohshima, Muneaki.) | Huang, Mingxin (Huang, Mingxin.) | Huang, Jiajin (Huang, Jiajin.)

收录:

EI Scopus

摘要:

Peculiarity rules are a new type of interesting rules which can be discovered by searching the relevance among peculiar data. A main task of mining peculiarity rules is the identification of peculiarity. Traditional methods of finding peculiar data are attribute-based approaches. This paper extends peculiarity oriented mining to relational peculiarity oriented mining. Peculiar data are identified on record level, and peculiar rules are mined and explained in a relational mining framework. The results from preliminary experiments show that relational peculiarity oriented mining is very effective. © 2004 IEEE.

关键词:

Data mining Data reduction Functions Learning algorithms Markov processes Mathematical models Monte Carlo methods Set theory

作者机构:

  • [ 1 ] [Zhong, Ning]Department of Information Engineering, Maebashi Institute of Technology, 460-1 Kamisadori-Cho, Maebashi 371-0816, Japan
  • [ 2 ] [Liu, Chunnian]Computer Science College, Beijing University of Technology, Multimedia and Intelligent Software Technology Beijing Municipal Key Laboratory, Beijing 100022, China
  • [ 3 ] [Yao, Y.Y.]Department of Computer Science, University of Regina, Regina, Sask. S4S 0A2, Canada
  • [ 4 ] [Ohshima, Muneaki]Department of Information Engineering, Maebashi Institute of Technology, 460-1 Kamisadori-Cho, Maebashi 371-0816, Japan
  • [ 5 ] [Huang, Mingxin]Computer Science College, Beijing University of Technology, Multimedia and Intelligent Software Technology Beijing Municipal Key Laboratory, Beijing 100022, China
  • [ 6 ] [Huang, Jiajin]Computer Science College, Beijing University of Technology, Multimedia and Intelligent Software Technology Beijing Municipal Key Laboratory, Beijing 100022, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

年份: 2004

页码: 575-578

语种: 英文

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:236/3269339
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司