• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhao, Xu (Zhao, Xu.) | Geng, Xueyan (Geng, Xueyan.) | Cheng, Weihu (Cheng, Weihu.) (学者:程维虎) | Zhang, Pengyue (Zhang, Pengyue.)

收录:

Scopus SCIE

摘要:

Upper records are important statistics in environmental science and many other fields. Because upper records are crucial for policy making, precise modeling and inference techniques are in high demand. The generalized Pareto distribution (GPD) is commonly adopted by researchers for modeling heavy tail phenomena in many applications. The statistical inference of the GPD upper records is a critical issue in record analysis. Based on upper record data, the current parameter estimation methods of the GPD depend on preassumed shape parameter and only estimate the location and scale parameters. However, the shape parameter is typically unknown in real applications. In this manuscript, we propose a new approach that can estimate all three parameters of the GPD. The proposed estimator is used in conjunction with a moment method and nonlinear weighted least squares theory that minimizes the sum of squared deviations between the upper records and their expectations. In simulation studies, we compare alternative estimators and demonstrate that the new estimator is competitive in terms of the bias and means square error in estimating the shape and scale parameters. In addition, we investigate the performance of different threshold selection procedures by estimating the Value-at-Risk (VaR) of the GPD. Finally, we illustrate the utilization of the proposed methods by analyzing an air pollution data. In this analysis, we provide a detailed guide for selecting the threshold and upper records.

关键词:

Parameter estimation Upper record values Extreme values Generalized Pareto distribution Threshold selection

作者机构:

  • [ 1 ] [Zhao, Xu]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
  • [ 2 ] [Geng, Xueyan]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
  • [ 3 ] [Cheng, Weihu]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang, Pengyue]Ohio State Univ, Coll Med, Dept Biomed Informat, Columbus, OH 43210 USA

通讯作者信息:

  • [Zhao, Xu]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

来源 :

STATISTICS AND ITS INTERFACE

ISSN: 1938-7989

年份: 2019

期: 4

卷: 12

页码: 501-510

0 . 8 0 0

JCR@2022

ESI学科: MATHEMATICS;

ESI高被引阀值:54

JCR分区:4

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:300/3909294
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司