• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Jianqiang (Li, Jianqiang.) (学者:李建强) | Sun, Jingchao (Sun, Jingchao.) | Liu, Lu (Liu, Lu.) | Liu, Bo (Liu, Bo.) (学者:刘博) | Xiao, Cao (Xiao, Cao.) | Wang, Fei (Wang, Fei.)

收录:

EI Scopus SCIE

摘要:

Maximum margin clustering (MMC) is an effective clustering algorithm, which first extends a large margin principle into unsupervised learning. This paper revisits the MMC problem and points out the potential problems encountered by a cutting plane approach. We propose an improved MMC algorithm via the bundle method (BMMC). Specifically, the constrained convex-concave procedure algorithm is first applied to decompose the MMC problem into a series of convex sub-problems, and then, the bundle method is adopted to efficiently solve each sub-problem. Moreover, a simpler formulation for the multi-class MMC is presented. In addition to clustering problems, the BMMC is also extended to the semi-supervised case by incorporating the pairwise constraints, which reveals its high scalability. Compared with the previous works, the proposed solution is much simpler and faster. The experiments on several data sets are conducted to demonstrate the effectiveness of our proposed algorithm.

关键词:

semi-supervised learning Bundle method maximum margin clustering unsupervised learning constrained convex-concave procedure

作者机构:

  • [ 1 ] [Li, Jianqiang]Beijing Univ Technol, Fac Informat Technol, Sch Software Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Sun, Jingchao]Beijing Univ Technol, Fac Informat Technol, Sch Software Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Liu, Lu]Beijing Univ Technol, Fac Informat Technol, Sch Software Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Liu, Bo]Beijing Univ Technol, Fac Informat Technol, Sch Software Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Li, Jianqiang]Beijing Engn Res Ctr IoT Software & Syst, Beijing 100124, Peoples R China
  • [ 6 ] [Xiao, Cao]IBM Corp, Thomas J Watson Res Ctr, Ctr Computat Hlth, Yorktown Hts, NY 10598 USA
  • [ 7 ] [Wang, Fei]Cornell Univ, Dept Healthcare Policy & Res, Ithaca, NY 14853 USA

通讯作者信息:

  • 刘博

    [Liu, Bo]Beijing Univ Technol, Fac Informat Technol, Sch Software Engn, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

IEEE ACCESS

ISSN: 2169-3536

年份: 2019

卷: 7

页码: 63709-63721

3 . 9 0 0

JCR@2022

JCR分区:1

被引次数:

WoS核心集被引频次: 5

SCOPUS被引频次: 8

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

在线人数/总访问数:276/4297332
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司