• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Xiao (Wang, Xiao.) | Zhang, Jianbiao (Zhang, Jianbiao.) (学者:张建标) | Zhang, Ai (Zhang, Ai.) | Ren, Jinchang (Ren, Jinchang.)

收录:

EI Scopus SCIE PubMed

摘要:

The promotion of cloud computing makes the virtual machine (VM) increasingly a target of malware attacks in cybersecurity such as those by kernel rootkits. Memory forensic, which observes the malicious tracks from the memory aspect, is a useful way for malware detection. In this paper, we propose a novel TKRD method to automatically detect kernel rootkits in VMs from private cloud, by combining VM memory forensic analysis with bio-inspired machine learning technology. Malicious features are extracted from the memory dumps of the VM through memory forensic analysis method. Based on these features, various machine learning classifiers are trained including Decision tree, Rule based classifiers, Bayesian and Support vector machines (SVM). The experiment results show that the Random Forest classifier has the best performance which can effectively detect unknown kernel rootkits with an Accuracy of 0.986 and an AUC value (the area under the receiver operating characteristic curve) of 0.998.

关键词:

memory forensic machine learning virtual machine private cloud kernel rootkit detection

作者机构:

  • [ 1 ] [Wang, Xiao]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Jianbiao]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Xiao]Beijing Key Lab Trusted Comp, Beijing 100124, Peoples R China
  • [ 4 ] [Zhang, Jianbiao]Beijing Key Lab Trusted Comp, Beijing 100124, Peoples R China
  • [ 5 ] [Zhang, Ai]Univ Calif San Diego, Dept Comp Sci & Engn, San Diego, CA USA
  • [ 6 ] [Ren, Jinchang]Univ Strathclyde, Dept Elect & Elect Engn, Glasgow, Lanark, Scotland

通讯作者信息:

  • 张建标

    [Zhang, Jianbiao]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;[Zhang, Jianbiao]Beijing Key Lab Trusted Comp, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

MATHEMATICAL BIOSCIENCES AND ENGINEERING

ISSN: 1547-1063

年份: 2019

期: 4

卷: 16

页码: 2650-2667

2 . 6 0 0

JCR@2022

ESI学科: MATHEMATICS;

ESI高被引阀值:54

被引次数:

WoS核心集被引频次: 16

SCOPUS被引频次: 31

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:547/3904912
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司