收录:
摘要:
In recent years, with extensive application in image retrieval and other tasks, a convolutional neural network (CNN) has achieved outstanding performance. In this paper, a new content-based medical image retrieval (CBMIR) framework using CNN and hash coding is proposed. The new framework adopts a Siamese network in which pairs of images are used as inputs, and a model is learned to make images belonging to the same class have similar features by using weight sharing and a contrastive loss function. In each branch of the network, CNN is adapted to extract features, followed by hash mapping, which is used to reduce the dimensionality of feature vectors. In the training process, a new loss function is designed to make the feature vectors more distinguishable, and a regularization term is added to encourage the real value outputs to approximate the desired binary values. In the retrieval phase, the compact binary hash code of the query image is achieved from the trained network and is subsequently compared with the hash codes of the database images. We experimented on two medical image datasets: the cancer imaging archive-computed tomography (TCIA-CT) and the vision and image analysis group/international early lung cancer action program (VIA/I-ELCAP). The results indicate that our method is superior to existing hash methods and CNN methods. Compared with the traditional hashing method, feature extraction based on CNN has advantages. The proposed algorithm combining a Siamese network with the hash method is superior to the classical CNN-based methods. The application of a new loss function can effectively improve retrieval accuracy.
关键词:
通讯作者信息:
电子邮件地址: