• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Du, Yongping (Du, Yongping.) (学者:杜永萍) | Zhao, Xiaozheng (Zhao, Xiaozheng.) | He, Meng (He, Meng.) | Guo, Wenyang (Guo, Wenyang.)

收录:

EI Scopus SCIE

摘要:

Sentiment classification of short text is a challenging task because of limited contextual information. We propose a capsule-based hybrid neural network model which can obtain the implicit semantic information effectively. Bidirectional gated recurrent unit (BGRU) is applied in this model to achieve the interdependent features with long distance. Moreover, the capsule network can extract richer textual information to improve expression ability. Compared with the attention-based model which combines self-attention mechanisms and convolutional neural networks (CNN), the capsule-based hybrid model has the advantage of less training time and simple network structure to achieve better performance. The performance is evaluated on two short text review datasets. Our capsule-based model outperforms other related models on movie review data and gets the highest accuracy of 0.8255. Meanwhile, it performs better than most of the systems in NLPCC2014 Task II and, especially achieves the best result on negative data.

关键词:

bidirectional gated recurrent unit Sentiment classification capsule network deep learning

作者机构:

  • [ 1 ] [Du, Yongping]Beijing Univ Technol, Coll Comp Sci, Beijing 100124, Peoples R China
  • [ 2 ] [Zhao, Xiaozheng]Beijing Univ Technol, Coll Comp Sci, Beijing 100124, Peoples R China
  • [ 3 ] [He, Meng]Beijing Univ Technol, Coll Comp Sci, Beijing 100124, Peoples R China
  • [ 4 ] [Guo, Wenyang]Beijing Univ Technol, Coll Comp Sci, Beijing 100124, Peoples R China

通讯作者信息:

  • [Zhao, Xiaozheng]Beijing Univ Technol, Coll Comp Sci, Beijing 100124, Peoples R China

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

IEEE ACCESS

ISSN: 2169-3536

年份: 2019

卷: 7

页码: 39321-39328

3 . 9 0 0

JCR@2022

JCR分区:1

被引次数:

WoS核心集被引频次: 34

SCOPUS被引频次: 51

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:194/4676850
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司