• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chen, Jindong (Chen, Jindong.) | Du, Yuxuan (Du, Yuxuan.) | Liu, Linlin (Liu, Linlin.) | Zhang, Pinyi (Zhang, Pinyi.) | Zhang, Wen (Zhang, Wen.)

收录:

Scopus SCIE PubMed

摘要:

The modeling and forecasting of BBS (Bulletin Board System) posts time series is crucial for government agencies, corporations and website operators to monitor public opinion. Accurate prediction of the number of BBS posts will assist government agencies or corporations in making timely decisions and estimating the future number of BBS posts will help website operators to allocate resources to deal with the possible hot events pressure. By combining sample entropy (SampEn) and deep neural networks (DNN), an approach (SampEn-DNN) is proposed for BBS posts time series modeling and forecasting. The main idea of SampEn-DNN is to utilize SampEn to decide the input vectors of DNN with smallest complexity, and DNN to enhance the prediction performance of time series. Selecting Tianya Zatan new posts as the data source, the performances of SampEn-DNN were compared with auto-regressive integrated moving average (ARIMA), seasonal ARIMA, polynomial regression, neural networks, etc. approaches for prediction of the daily number of new posts. From the experimental results, it can be found that the proposed approach SampEn-DNN outperforms the state-of-the-art approaches for BBS posts time series modeling and forecasting.

关键词:

time series BBS posts deep neural networks sample entropy

作者机构:

  • [ 1 ] [Chen, Jindong]Beijing Informat Sci & Technol Univ, Sch Econ & Management, Beijing 100192, Peoples R China
  • [ 2 ] [Du, Yuxuan]Beijing Informat Sci & Technol Univ, Sch Econ & Management, Beijing 100192, Peoples R China
  • [ 3 ] [Liu, Linlin]Beijing Informat Sci & Technol Univ, Sch Econ & Management, Beijing 100192, Peoples R China
  • [ 4 ] [Zhang, Pinyi]Beijing Informat Sci & Technol Univ, Sch Econ & Management, Beijing 100192, Peoples R China
  • [ 5 ] [Chen, Jindong]Beijing Key Lab Green Dev Decis Based Big Data, Beijing 100192, Peoples R China
  • [ 6 ] [Du, Yuxuan]Beijing Key Lab Green Dev Decis Based Big Data, Beijing 100192, Peoples R China
  • [ 7 ] [Liu, Linlin]Beijing Key Lab Green Dev Decis Based Big Data, Beijing 100192, Peoples R China
  • [ 8 ] [Zhang, Pinyi]Beijing Key Lab Green Dev Decis Based Big Data, Beijing 100192, Peoples R China
  • [ 9 ] [Zhang, Wen]Beijing Univ Technol, Sch Econ & Management, Beijing 100124, Peoples R China
  • [ 10 ] [Zhang, Wen]Xian Univ, Sch Informat Engn, Xian 710065, Shaanxi, Peoples R China

通讯作者信息:

  • [Zhang, Wen]Beijing Univ Technol, Sch Econ & Management, Beijing 100124, Peoples R China;;[Zhang, Wen]Xian Univ, Sch Informat Engn, Xian 710065, Shaanxi, Peoples R China

查看成果更多字段

相关关键词:

来源 :

ENTROPY

ISSN: 1099-4300

年份: 2019

期: 1

卷: 21

2 . 7 0 0

JCR@2022

ESI学科: PHYSICS;

ESI高被引阀值:123

JCR分区:2

被引次数:

WoS核心集被引频次: 5

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:368/3901515
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司